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Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a dimensionality reduction technique used to simplify
complex datasets by transforming them into a set of uncorrelated, lower-dimensional
components while preserving as much variance (information) as possible. This makes PCA
particularly useful for handling large datasets with many variables, where it’s challenging to
understand or visualize relationships between variables.

Key Concepts in PCA

1. Principal Components:

O

PCA transforms the original variables into new variables called principal
components.

Each principal component is a linear combination of the original variables,
capturing a certain proportion of the data's variance.

The components are uncorrelated with each other and are ranked by the amount
of variance they explain, with the first component explaining the most variance,
the second explaining the next highest amount, and so on.

2. Purpose of PCA:

O

Dimensionality Reduction: PCA reduces the number of variables in a dataset
while preserving most of its variability. This is valuable for reducing data
complexity and removing noise.

Data Visualization: By reducing high-dimensional data to two or three principal
components, PCA allows for visualization of complex datasets.

Feature Extraction: PCA can be used to create new features that summarize the
original data, especially when the data has redundant or highly correlated
variables.

3. How PCA Works:

(o]

Step 1: Standardization (optional, but recommended): Center and scale the
data so each variable has a mean of 0 and a standard deviation of 1. This step
ensures that all variables contribute equally to the analysis, regardless of their
original units or scales.

Step 2: Covariance Matrix Calculation: Compute the covariance (or
correlation) matrix of the standardized data to understand relationships
between variables.

Step 3: Eigenvalue and Eigenvector Computation: Compute the eigenvalues
and eigenvectors of the covariance matrix. Eigenvalues measure the amount of
variance each principal component explains, and eigenvectors determine the
direction of each component.

Step 4: Selecting Components: Choose the top components that capture the
most variance. The sum of their eigenvalues will represent the total variance
retained.

Step 5: Transform Data: Project the original data onto the selected components
to obtain a new dataset in a lower-dimensional space.



Exploratory data analysis in environmental health
Dr Stéphane Joost, Dr Mayssam Nehme, Noé Fellay

4. Explained Variance:

o Each principal component explains a proportion of the total variance in the
dataset. The explained variance ratio for a component is the percentage of
variance it explains relative to the total variance.

o Often, a certain percentage of the variance (e.g., 90% or 95%) is used as a
threshold to decide the number of components to retain.

Loadings

In PCA, loadings are coefficients that show the relationship between each original variable and
each principal component. They indicate how much each variable "loads" onto each component
and represent the correlation between the variable and the component. Loadings are essential in
interpreting the components because they tell us which variables contribute the most to each
component and help us understand what each component represents.

Key Points about Loadings in PCA
5. Definition:

o Theloading of a variable on a principal component is the correlation between the
variable and the component.

o It quantifies how strongly each variable is associated with the component.
6. Interpretation:

o High absolute values of loadings indicate that the variable contributes
significantly to the component.

o Ifavariable has a high positive loading on a component, it means it positively
influences that component.

o Ifit has a high negative loading, it means it negatively influences the component.
7. Loading Matrix:

o InPCA, we compute a matrix called the loading matrix (or component
loadings matrix), often denoted by L. This matrix has dimensions pxk, where p
is the number of original variables and k is the number of components.

o Each element J; in the loading matrix is the loading of variable i on component .
8. Connection to Eigenvectors:

o Mathematically, loadings are computed from the eigenvectors of the covariance
(or correlation) matrix of the original data, scaled by the square root of the
corresponding eigenvalues.

o If we denote the eigenvectors by E and the eigenvalues by 4, then the loading for

each Erincifal component can be derived as

9. Interpretation in Reduced Dimension:

o Loadings help us interpret the reduced-dimensional space created by PCA. By
examining which variables have high loadings on each principal component, we
can label the components based on the types of information they capture.

10. Squaring Loadings for Variance Explanation:
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o Squaring each loading gives the amount of variance in the original variable
explained by the component. Squared loadings are also referred to as squared
correlations.

Example

Suppose you have three variables (e.g., height, weight, and age) and two principal
components (PC1 and PC2). If the loading matrix L looks like this:

This means:

e PC1 is strongly correlated with height (0.8), weight (0.7), and age (0.6), suggesting it
might represent "overall size."

e PC2 is mostly correlated with age (0.9), suggesting it may capture an "age-related”
component.

In this way, the loading matrix is crucial for interpreting the structure uncovered by PCA.

Squared correlations

In Principal Component Analysis (PCA), squared correlations (also known as squared loadings
or communality) reflect the proportion of variance in each original variable that is explained by
the principal components.

Here's a breakdown of what squared correlations represent in PCA:

11. Squared Loadings: When we project the original variables onto the principal
components, we get loadings, which are the correlation coefficients between each
variable and each component. Squaring these loadings gives the proportion of variance
in each variable explained by each component. If you have p original variables and k
components, then for each variable, you’ll have k squared loadings that add up to the
communality of that variable.

12. Communality: For each original variable, the sum of its squared loadings across all
components gives the communality of that variable. This communality measures how
well the principal components, taken together, explain the variance in that specific
variable. Communality values closer to 1 indicate that the components capture most of
the variance in that variable, while values closer to 0 indicate a weaker representation.

13. Interpretation: These squared correlations are helpful to assess which variables are
well-represented in the principal component space and to understand how much of each
variable’s information is retained in the reduced dimensionality.



Exploratory data analysis in environmental health
Dr Stéphane Joost, Dr Mayssam Nehme, Noé Fellay

Calculation of Squared Correlations

If the loading matrix L has elements I;, where I is the loading of variable i on component j, then
the squared correlations are /;2. For the communality of variable i, you calculate:

k
Communality; = Z Ifr

i=1

where k is the total number of principal components retained.
Squared correlations are thus useful for understanding the explanatory power of each

component for each variable and for determining how well the PCA captures the structure of
the data.

PCA results in a geospatial context

In a geospatial context, Principal Component Analysis (PCA) can be highly effective for
analyzing spatially distributed data with multiple variables (e.g., environmental data, socio-
economic factors, or climate variables) across geographic regions. By using PCA, complex, high-
dimensional geospatial data can be simplified and visualized in ways that reveal patterns,
trends, or regions with similar characteristics. Here’s how PCA can be applied and how it
contributes to creating geographic maps:

14. Identifying Patterns in Geospatial Data

¢ Reducing Complexity: Geospatial datasets often contain numerous correlated variables
collected for different regions (such as climate variables, soil characteristics, population
density, etc.). PCA helps reduce these variables into a smaller set of uncorrelated
principal components that capture the main patterns.

¢ Finding Underlying Trends: Each principal component can highlight a dominant spatial
trend, such as regions with similar climate profiles, land use types, or socio-economic
characteristics. This can be particularly useful in environmental studies, urban planning,
and resource management.

15. Data Preparation for Geospatial PCA

e Spatial Units: Divide the area of interest into spatial units (e.g., grids, administrative
boundaries, or custom regions).

e Standardization: Standardize the variables to make them comparable, as they might be
on different scales (e.g., temperature, elevation, rainfall).

e Applying PCA: Run PCA on the standardized dataset to obtain the principal components.
The results will give each spatial unit a set of component scores for each principal
component.

16. Interpreting Principal Components for Mapping

e Component Scores for Mapping: Each principal component gives a new score for each
spatial unit, reflecting how strongly that unit is associated with the component’s trend.
These scores can be mapped to visualize spatial patterns.
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17.

18.

Thematic Mapping: The component scores can be visualized as thematic maps, where
each spatial unit is colored or shaded based on its score for a particular component. For
example:

o PC1 Map: If the first principal component (PC1) represents a climate gradient, a
map of PC1 scores might show how climate varies across the region.

o PC2 Map: If the second principal component captures population density, a map
of PC2 scores might highlight areas of high vs. low population density.

Examples of PCA in Geospatial Applications

Environmental Studies: PCA can help identify regions with similar environmental
profiles, such as areas with high precipitation and low temperatures or regions with high
vegetation density and low soil moisture. Maps of these components can be used for
ecosystem monitoring or conservation planning.

Urban Analysis: In urban studies, PCA can reveal socio-economic and demographic
patterns. For instance, one component may capture urbanization gradients,
distinguishing urban from rural areas. Thematic maps of these components can aid in
urban planning and resource allocation.

Climate Analysis: PCA can simplify climate data, such as temperature, humidity, and
precipitation across a region, into dominant patterns. For example, PCA might reveal
major climate zones, and maps of these patterns can be used in climate change impact
studies.

Creating Geographic Maps from PCA Results

Visualizing Scores as Heatmaps or Choropleth Maps: For each principal component,
use the component scores of each spatial unit to create a map (usually a heatmap or
choropleth). Regions with similar colors on the map share similar values for the
component and thus exhibit similar characteristics according to the patterns found by
PCA.

Multiple Component Maps: If the first few components capture significant and distinct
patterns, each can be mapped separately to highlight different aspects of the data.
Alternatively, overlaying maps of the first few components can create a composite map
showing more nuanced relationships.

Interpreting Color Schemes: Choose color schemes that make it easy to differentiate
high, medium, and low values for each component. For example, in a climate study, blue
might indicate cool, humid areas, while red indicates hot, dry regions.
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Visualizing PCA in 3D

Use this link for interactive data manipulation:
https://bryanhanson.github.io/LearnPCA /articles /Vi

05 Visualizing PCA 3D.html

The images hereunder are extracted from these animations.
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https://bryanhanson.github.io/LearnPCA/articles/Vig_05_Visualizing_PCA_3D.html
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